If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2-11n-23=0
a = 10; b = -11; c = -23;
Δ = b2-4ac
Δ = -112-4·10·(-23)
Δ = 1041
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{1041}}{2*10}=\frac{11-\sqrt{1041}}{20} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{1041}}{2*10}=\frac{11+\sqrt{1041}}{20} $
| 4x+3=23+3x | | 1/8(8x-5)=-9/4-9/4 | | 5x+1=12x-20 | | -2-7a=26 | | 7+x+2=15 | | -18+9x=9x-18 | | 9.088=36.8t-3.55t^2 | | (10/7)=(1.005)^12*t | | -3p=20 | | 4x=14-x/4 | | 5x-3+90=8x-4 | | 15x-5=12x-4 | | 1/6(x+5)+5x=1/7x+4 | | 47x=65x+1 | | 2x+11=-x+2 | | 9x+7=-200 | | 6=2(j+2) | | 15=9–3p | | 4y+14=6(y-7) | | 2j=98 | | 5=—z−4−3 | | 6=1+m/3 | | h+1=-(h/2)+5 | | 3y-27=36 | | 4p-10=3p+12 | | -39m-20=5m | | 40/50a+90/100a=60 | | -1/5(x-25=12 | | 10x+17-(x-9)/3=3x+1 | | 4/5a+9/10a=6 | | 8/10a+9/10a=6 | | -x=-6x+35 |